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The effects of temporal data aggregation

on price transmission analysis

Clemens Heinrich Hoffmann Stephan von Cramon-Taubadel

Abstract: Agricultural economists often use temporally aggregated data for price transmission
analyses due to data availability but the used vector error correction models (VECM) indirectly
assume that all price information is included in the analysis. In consequence, internal dependency
structures are not captured correctly, and estimated parameter values can be biased. The model
with temporally aggregated data requires a moving average dynamic as a remedy because the error
terms are autocorrelated. We show how the correct aggregated parameter values can be derived.
With Monte Carlo experiments, we compare the true parameter values with estimated ones. For
the estimations, we use maximum likelihood method by Johansen and Juselius for VECM and
the method by Yap and Reinsel for error correction vector autoregressive moving average (EC-
VARMA) models. To demonstrate that temporal aggregation matters in real world data, we perform
a price transmission analysis for the French and German hog market. We ourselves aggregate the
data and observe a moving average dynamic in the aggregated data sets. Furthermore, we see an
improvement in biasness and efficiency for the adjustment parameter with the EC-VARMA models.
We conclude that aggregated data need moving average parameters for a correct estimation, but
EC-VARMA models are challenging to specify and to estimate, especially in small data sets due to
the identification problem.

Keywords: temporal aggregation, VECM, EC-VARMA, autocorrelation, European hog markets

1 Introduction

The key assumption in price transmission analysis is the law of one price, i.e., if a profit can be made by
arbitrage there will be market participants who engage in the respective trades. In a perfect world with
full information and no time and space dimensions, the price of a homogeneous good is therefore set by
the market equilibrium. But in reality, markets are separated by time and space and information is limited
for market participants. So, economists relax the assumption, instead of an all-time fulfilled equilibrium a
long-run equilibrium is assumed to which prices adjust to.

Such price transmission processes can be modeled in very different ways (Cramon-Taubadel and Good-
win, 2021). At core of many approaches is the vector error correction model (VECM) estimation (Engle
and Granger, 1987; Johansen and Juselius, 1990). Price transmission is a time dependent process, a pro-
cess of information transfer. Market participants act and react based on available price information from
their market and all other connected markets. The “natural” frequency of this process is depending on the
transaction frequency and the transparency of the markets.

But as the meta-analysis of Mengel and Cramon-Taubadel (2014) indicates, most market integration
analyses are performed with monthly data, which is of lower frequency than the underlying markets react
to. Therefore, a gap opens between the information that is available for market participants and for us as
price transmission analysts. Data frequency matters for price transmission analysis Amikuzuno (2010) finds
stronger adjustments to multimarket equilibriums for the Ghanaian tomato market with monthly than with
semiweekly price data but he cannot explain this finding.
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We want to give some insights on theoretical effects of temporal aggregation and how they affect price
transmission analysis, especially why standard VECM estimations might lead to biased results. Hereby,
temporal aggregation refers to two aggregation schemes. On the one hand, there is skip sampling, also known
as systematically sampling or point in time sampling, and on the other hand, there is average sampling,
also known as flat sampling. In multivariate models, there is the additional problem that the price series
might be differently aggregated, i.e., they differ in the aggregation scheme or their aggregation periods are
not perfectly synchronous. These special multivariate cases we will not cover.

Prices are stock variables, so all findings are applicable for other models with only stock variables. Flow
variables, e.g., traded quantities of goods, are differently temporally aggregated. For them all values of
one aggregation period are summed up, e.g., the yearly traded quantity is the sum of all monthly traded
quantities of the corresponding year. This is similar to average aggregation of stock variables but not
completely identical.

Our paper is structured that we give at first an overview on what is known about temporal aggregation
from the econometric literature. Than we describe the five steps of a standard procedure to analyze price
transmission: testing for stationarity, specification of number of lags, testing for cointegration, estimating the
VECM and calculating price transmission measures. From it, we focus on the effects of temporal aggregation
on the last two. In the third chapter, we describe a methodic approach on how to derive the aggregated
model and the price transmission measures. In the fourth chapter, we give the results of our Monte Carlo
experiments, followed by an empirical example with French and German hog prices. Finally, we give our
conclusion and some recommendations on temporal aggregation.

1.1 Econometric background

In the econometric literature, the role of data frequency and temporal aggregation in time series models is
discussed. Average aggregation causes an autocorrelation pattern for the first differences of a random walk.
This effect is induced because the values of the aggregated time series are derived from overlapping intervals
of the same series of random errors (Working, 1960), i.e, initial error realizations appear multiple times
in consecutive values of the aggregated series. For time series models, this means that a moving average
(MA) dynamic is induced. More generally, if the data is generated by a univariate autoregressive (AR)
model then the model class will switch to autoregressive moving average (ARMA) models (Amemiya and
Wu, 1972). This means data aggregation goes hand in hand with model aggregation and through internal
dependencies, the AR polynomial induces a MA dynamic through temporal aggregation. For the different
parts of integrated autoregressive moving average (ARIMA) models, the effects of temporal aggregation are
outlined by Granger (1988): The AR coefficients loose explanatory power and go to zero, which can be
shown through recursive substitution (when a variable depends 0.5 on its predecessor, it also depends 0.25
on its value two periods ago, 0.125 on the one three periods ago, etc.); the MA coefficients stay relevant but
their structure can get simplified; and the degree of integration stays the same.

For vector autoregressive moving average (VARMA) models, Lütkepohl (1987) derives a methodology
to linear transform and aggregate them. This approach shows that a vector autoregressive (VAR) model
becomes a VARMA model when the process is aggregated. Even though, the method includes all kinds of
temporal and contemporaneous aggregation schemes, the specification of the aggregated model does not give
any insights on cointegration. Marcellino (1999) shows with his way to derive aggregated VARMA processes,
that cointegration is stable even though the data is temporally aggregated, i.e. the long run relationship of
cointegrated variables does not change. Also, the degree of integration of the variables is stable. We use this
approach in our paper.

We find other noticeable work on temporal aggregation (Chambers, 2003; Chambers, 2011; Pons and
Sansó, 2005) which is based on a triangular error correction model (Phillips, 1991). Instead of a discrete
data, Chambers chooses a continuous approach for the time series. Therefore, he does not rely on the
data frequency. He shows that estimations based on flow variables are more efficient than estimation with
stock variables or a mixture of both. Of mature concern is the heavy estimation bias when flow or average
aggregated data is used, because of its autocorrelation. He applies a modified estimation procedure (Phillips
and Hansen, 1990) to cope this cause of bias.
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The continuous approach is criticized, especially market reactions tend to be more abrupt, i.e. more
discrete (Pons and Sansó, 2005). They also conclude that average aggregation leads to more efficient esti-
mates than skip aggregation. Estimation based on a combination of aggregation schemes showed the worst
performance. For them, sample size is a more concerning factor than aggregation schemes.

1.2 A usual price transmission analyses procedure and following research
questions for working with temporally aggregated data

Our research focuses on the effects of temporally aggregated data on a usual price transmission analyses
procedure. It consists of five steps. At first, the prices are tested whether they are integrated with an
Augmented Dickey Fuller (ADF) test. Granger (1988) and Marcellino (1999) point out that the degree of
integration does not change with temporal aggregation. Wu et al. (2015) study the effects of skip aggregation
on stationarity tests. For several agricultural commodity futures prices, a comparison is drawn between
results of their Bayesian Model Averaging unit root test method with ADF tests.

In the second step of the procedure, VAR models with different numbers of lags are estimated. They are
compared via model selection criteria. In case of a process with MA dynamic, the true number of lags goes
to infinity. Lewis and Reinsel (1985) derived an upper bound for the number of lags, when such a process
is approximated with a VAR model. It implies that p → ∞ and p3/T → 0 when T → ∞. Here, p is the
number of lags and T the sample size. Consequently, p follows a function of T with a growth rate smaller
than T 1/3. In case of a sample size of 120 observations, p must be smaller than five, to not overfit the model.
This theoretical upper limit is also applicable for VECM models (Saikkonen and Lütkepohl, 1996). Of the
three common information criteria, Akaike Information criterion (AIC), Bayesian Information criteria (BIC)
and Hannan-Quinn criteria (HQ), AIC usually suggests the highest lag order, which might be higher than
the upper bound.

Thirdly, the prices are tested on cointegration. Here, a Johansen test is used that fits to the model
specification (i.e. with or without constant or trend in the model). This test is designed for models with
finite lag structures. The Johansen test stays asymptotically valid, when the VECM has a MA dynamic
(Saikkonen and Lütkepohl, 1996). Yet, the chosen lag order matters for test size and power. Athanasopoulos
et al. (2016) developed a non-parametric method to determine the cointegration rank that performes better
then the Johansen test for EC-VARMA models.

The fourth step is estimating the VECM with p − 1 lags. As the usual VECM does not include a MA
dynamic, the model is not specified in its actual form if the data is temporally aggregated. The EC-VARMA
model has a VECM representation with infinite lags. The effects of the MA dynamic are in this representation
attributed to other model parameters. Depending on the structure of the MA matrix polynomial, this leads
to stronger and weaker changes of individual AR and adjustment parameter. Marcellino (1999) shows that
both temporal aggregation schemes differ in their MA dynamic and their error variance-covariance matrix.

Fifthly and finally, price transmission metrics are calculated to assist interpreting the model. Common
ones are the PT measure of Gonzalo and Granger (1995) and the IS measure developed by Hasbrouck (1995).
These depend either on parts or the whole VECMmodel. Both express shares of price transmission attributed
to different markets.

From this procedure, we focus on two questions:

1. Does the autocorrelation that is introduced by temporal aggregation bias estimation results of VECMs
if MA parameters are omitted?

2. Similarly, are PT-measure and IS measure affected by temporal aggregation?

2 Methods and Data

We want to answer these questions with Monte Carlo experiments. This has the advantage of knowing
the non-aggregated data generating process and gives us the possibility to rule out further effects, e.g., of
seasonality or heteroscedasticity. We assume that the effects that we find for simple EC-VARMA models,
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are also apparent in more complex time series models. In general, a EC-VARMA can be expressed by
equation 1:

∆Pt = αβ
′
Pt−1 +

p−1∑
i=1

Γi∆Pt−i + ut +

q∑
j=1

Mjut−j (1)

P is the vector of prices and u is the vector of random error terms. The delta indicates that the first
difference of a price is used. The alphas are the so-called adjustment parameters, and the betas are the
parameters of the long-run equilibriums. The product αβ

′
is also referred as Π. This matrix can be split

into α and β
′
because of its reduced rank. A constant β0 can be added to the long-run relationship. Γi is to

ith matrix of transitory parameters and Mj refers to the jth matrix of MA parameters. For our simulation
exercise, we use the estimated model from section 4. It is the following bivariate process:[

∆P1t

∆P2t

]
=

[
−0.11
0.05

] [
P1t−1 − 1.01P2t−1 − 10.39

]
+

[
0.44 −0.13
0.22 0.56

] [
∆P1t−1

∆P2t−1

]
+

[
u1t

u2t

]
+

[
0.26 0.15
0.09 −0.3

] [
u1t−1

u2t−1

]
(2)

with error means E

[
u1t

u2t

]
=

[
0
0

]
and variance-covariance matrix Σ =

[
5.69 0.91
0.91 4.85

]
.

EC-VARMA processes can be approximated with VECMs. Using the same empirical data set, we
estimate this VECM:[

∆P1t

∆P2t

]
=

[
−0.08
0.09

] [
P1t−1 − 1.03P2t−1 − 8.65

]
+

[
0.72 0.06
0.29 0.29

] [
∆P1t−1

∆P2t−1

]
+

[
−0.28 −0.01
0.00 0.16

] [
∆P1t−2

∆P2t−2

]
+

[
u1t

u2t

]
Σ =

[
5.21 0.85
0.85 4.83

]
(3)

For the analysis of temporal aggregation effects, it is better to use the EC-VARMA process, because its
temporally aggregated model has less lags. We generate 100 data sets of 48000 “weekly” observations.
These are aggregated to a sample size T of 12000 “monthly” data points. For skip aggregation, we use each
fourth observation and for average aggregation, we compute the arithmetic means of each consecutive set of
four values. Before we use our simulated to investigate our questions, we apply skip and average aggregation
theoretically to derive the aggregated models. For all estimations, we use a sample of 12000 values, even
though this means we omit the last 36000 values for the non-aggregated samples, to rule out effects from
the size of the data set.

2.1 Temporal aggregation of EC-VARMA models

When we want to analyze biasness of coefficient estimates, we need a benchmark. In our case, we need
to derive the true coefficients of the aggregated model. Therefore, we utilize the procedure of Marcellino
(1999). We present here a summary of this procedure, an application of the steps on an concrete example
can be found in the annex. At first, we transfer the EC-VARMA into its level-VAR representation:

Pt =

p∑
i=1

AiPt−i + ut +

q∑
j=1

Mjut−j (4)

with A1 = I+Π+Γ1,Ai = Γi − Γi−1, i = 1, .., p− 1 and Ap = −Γp−1. Now the model can be expressed
with the lag operator L by the following equation:(

I−
p∑

i=1

AiL
i

)
P = A (L)P = M (L)u =

(
I−

q∑
j=1

MjL
j

)
u (5)

Here A (L) refers to the AR lag matrix polynomial and M (L) to the MA lag matrix polynomial. For models
without MA coefficients, M (L) is simply an identity matrix. For average aggregation, u is pre-multiplied
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by a scalar polynomial of degree l − 1 and coefficients equal to 1/l. Here, l refers to the length of the
aggregation period. Similarly, we can implement a mixture of aggregation schemes. The actual aggregation
is then applied by pre-multiplying a specific lag matrix polynomial B (L):

A∗ (L∗)P ∗ = B (L)A (L)P = B (L)M (L)u = M∗ (L∗) u∗ (6)

An asterisk behind a letter means that the part of the model is aggregated. A∗ (L∗) and A (L) have the
same polynomial degree, i.e., the number of AR lags is identical for the aggregated and non-aggregated
model. B (L) just shifts A (L) so that A∗ (L∗) only depends on commonly known prices, i.e., A∗ (L) has
parameters equal to zero with exemptions of the lags for which aggregated data is available. For l = 4 and
p = 2, B (L) just shifts A (L) to the fourth and eighth lag:

A∗(L) = B(L)A(L) = I +A∗
4L

4 +A∗
8L

8 (7)

Through re-indexing, we move the length of one period from one ”week” to one ”month”:

A∗(L∗) = I +A∗
1∗L

∗ +A∗
2∗L

∗2 (8)

The lag operator is then aggregated by redefinition and omission of all lags with zero coefficient matrices.
To derive the coefficients of B (L), we need two matrices:

Av = (A1, . . . , Ap, 0, . . . , 0)
k×k(p+pl)

Am =


−I A1 · · · Ap 0 · · · 0

0 −I A1 · · · Ap

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0 · · · 0 −I A1 · · · Ap


k(p+pl)×k(pl)

From these two matrices, we delete each lth column, i.e., if the aggregation period length is two, we will
delete the second one, the fourth one, the sixth one and so on. The coefficients matrix B is then determined
by:

B = (B1, B2, . . . , Bp∗l−p) = Av;−kA
−1
m;−k

To obtain M∗ (L∗) u∗, one further step aside the multiplication of B (L) is necessary. With the variance-
covariance matrix and the autocovariance matrices of B (L)M (L)u, we set up a non-linear equation system
which solutions give M∗ (L∗) and the variance-covariance matrix of u∗. The aggregated level-VARMA
representation can now be retransformed into its error correction form. Its parameters can be derived as
follows: Π∗ = −(I−

∑p
i=1 A

∗
i ) and Γ∗

i = −
∑p−1

j=i A
∗
j+1.

2.2 Estimation of models with aggregated data

After deriving the aggregated model, we estimate the VECM with the maximum likelihood method of
Johansen and Juselius (1990). We use the number of lags that AIC suggests, taking the upper lag limit for
approximation of VARMA processes into account. We compare the means of the estimated parameters with
their true values from the benchmark and also give their 5%- and 95%-quantiles and their corresponding
standard deviations.

We also give estimates for the correct EC-VARMA models. These model type faces the same identi-
fication problem as VARMA models, i.e., not every model specification is estimable. Only with well set
parameter restrictions, the estimation algorithm such as the one of Yap and Reinsel (1995) will converge.
One simple way is the final moving average (FMA) form used by Kascha and Trenkler (2015). It has the
disadvantage that the estimated models are restricted to a one-dimensional MA dynamic. We can bring our
predicted models to FMA form but this transformation is not easily reversible so we cannot retrieve the true
parameter values.

Alternatives to the FMA form are the reverse echolon form by Poskitt and Lütkepohl (1995) and the
scalar component method (SCM) by Athanasopoulos et al. (2016). We use the later because it is more
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flexible, i.e., the number of AR and MA lags doesn’t need to be identical. Therefore the SCM specification
often uses less free parameters then reverse echolon form, which increases estimation efficiency. The canonical
correlation tests by Tiao and Tsay (1989) allow us to identify scalar components in a data set through testing.
Athanasopoulos et al. (2016) show that this testing procedure for stationary VARMA models can be applied
to cointegrated data sets without changes. We present the interpretation of the test table in section 4. For
our simulated data sets, we can ignore the identification problem due to the huge sample size.

Estimating EC-VARMA is usually done in three steps (Kascha and Trenkler, 2015): At first we estimate
a long VAR model with hT lags. Bartel and Lütkepohl (1998) suggest to choose hT as the maximum of
log(T ) and h(AIC), where the later is hT of the model with the lowest value for the Akaike information
criterion.

In second step, we use the the error terms of the long VAR to estimate an EC-VARMA without rank
restriction in the Π-matrix. Its estimated parameters and an approximated decomposition of Π into α and
β give the start values for step 3.

Thirdly and finally, we use a Newton-algorithm to improve our estimates of our free parameters. Usually
convergence is reached after small amount of iterations. The same algorithm is then also used to derive
the standard deviations of the short-run parameters. With the estimated parameters, we can then calculate
price discovery metrics.

2.3 Price discovery metrics

We look at two price discovery metrics: the PT and the IS measure. Equation 9 gives the definition of the
PT measure by Gonzalo and Granger (1995).

PT 1 =
α1

α1 − α2
, PT 2 = 1− PT 1 =

α2

α2 − α1
(9)

It depends only on the adjustment parameter of the VECM. So it is straight forward to adapt the PT
measure to EC-VARMA models.

Another commonly used price discovery metric the IS measure proposed by Hasbrouck (1995). Equa-
tion 10 states its definition.

IS1 =
[ΨC]21
ΨΣΨ′ , IS2 =

[ΨC]22
ΨΣΨ′ (10)

Here C is the Cholesky factorization of Σ and Ψ the long-run impact matrix of an error term. [ΨC]i refers
to the element that corresponds with the ith price. ψ itself is computed following equation 11, where β⊥
and α⊥ are orthogonal matrices to β and α.

Ψ = β⊥

[
α′
⊥

(
Ik −

p−1∑
i=1

Γi

)
β⊥

]−1

α′
⊥ (11)

The IS measure is only defined for error correction models without MA dynamic. Therefore, we adapt its
definition for EC-VARMA models. The general VECM equation 12 can be expressed with a lag polynomial
C(L) as in equation 13.

∆Pt = αβ
′
Pt−1 +

p−1∑
i=1

Γi∆Pt−i + ut (12)

C(L)yt =

(
(1− L) IK − αβ′L−

p−1∑
i=1

Γi (1− L)Li

)
yt = ut, (13)

Following the Granger Representation Theorem, the inverse of C(L) is

C (L)−1 = Ψ

t∑
i=1

L(t−i) +Ψ∗ (L) (14)
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Applying this Inverse to our EC-VARMA model, we derive the vector moving average representation (VMA)
of equation 15.

yt =

(
Ψ

t∑
i=1

L(t−i) +Ψ∗ (L)

)
M(L)ut (15)

As in case for the VMA of the VECM without MA dynamic, the VMA of an EC-VARMA can have a
constant. For simplicity, we assume that this constant is zero. If the EC-VARMA has two MA lags, its
VMA representation is

yt =

(
Ψ

t∑
i=1

L(t−i) +Ψ∗ (L)

)
ut+

(
Ψ

t−1∑
i=1

L(t−1−i) +Ψ∗ (L)

)
M1ut−1+

(
Ψ

t−2∑
i=1

L(t−2−i) +Ψ∗ (L)

)
M2ut−2

(16)
As the IS measure is only interested in the part of the shocks that is permanently incorporated in the prices,
we only look at the long-run impact matrix before ut−2:

Ψ (I +M1 +M2)

t−2∑
i=1

L(t−2−i)ut−2

=

β⊥ [α′
⊥

(
Ik −

p−1∑
i=1

Γi

)
β⊥

]−1

α′
⊥

 (I +M1 +M2)

t−2∑
i=1

L(t−i)ut−2 (17)

ut and ut−1 will appear again the model, so their long-run impact matrices do not contain their complete
permanent effect, which the IS measure demands. In the IS measure calculation, we replace Ψ with Ψ(I +
M1 +M2) .

3 Monte Carlo experiments

Before we give the results for the estimations with aggregated data sets, we recover the initial parameter
of the non-aggregated process to have a reference point. In table 1, we give the estimation results for the
EC-VARMA model with the true specification and for the approximating VECM. For the 100 data sets,
AIC suggests use 58 times four, 32 times five, five times six and another 5 times seven lags for the VECM
estimation. We use four lags for all 100 estimations to have comparable results. The true parameter values
and the means of the corresponding estimated ones are very close for the EC-VARMA models and still close
for the adjustment parameter of the VECMs. The Gammas take most the burden that comes from excluding
a MA dynamic. The percentiles and standard deviations (SD) indicate an efficient estimation. The p-values
suggest that the results are normal distributed for the short-run parameter.
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3.1 Skip aggregation

When we apply Marcellino’s framework of temporal aggregation to our error correction process, we derive
the following EC-VARMA model (parameter rounded to two decimal places):[

∆P1t

∆P2t

]
=

[
−0.66
0.04

] [
P1t−1 − 1.01P2t−1 − 10.39

]
+

[
0.03 −0.06
0.09 0.02

] [
∆P1t−1

∆P2t−1

]
+

[
u1t

u2t

]
+

[
0.28 −0.09
0.26 0.08

] [
u1t−1

u2t−1

]
Σ =

[
58.88 47.99
47.99 108.69

]
(18)

Before, we estimate the VECM with the skip aggregated data sets, we use AIC to get a suggestion on the
number of lags. It recommends 71 times two, 25 times three and 4 times four lags. Therefore, we choose the
specification with two lags for all 100 estimations. Aside the VECM estimations without MA dynamic, we
also give the results of the EC-VARMA estimations. Both can be found in table 2. The long-run parameters
seem to be unaffected for both models. For the VECM, both adjustment parameters appear to be on average
overestimated, especially α2 when the MA dynamic is not accounted for. Further, the transitory parameters
take over effects from the MA parameters when these are omitted.

For the estimation of the EC-VARMA models, we observe the only small deviations from our prediction
for the parameters. Even though the large sample size allows us to mostly ignore the identification problem,
it still persists and actually specifications with less parameter are indicated by the canonical correlation
tests. The percentiles and the standard deviations show a much lower efficiency in comparison with the
VECM estimation, this is probably caused also by ignoring the identification problem.

3.2 Average aggregation

After skip aggregation, we now move on to temporal aggregation through averaging. Applying Marcellino’s
procedure derives the following aggregated process:[

∆P1t

∆P2t

]
=

[
−0.66
0.04

] [
P1t−1 − 1.01P2t−1 − 10.39

]
+

[
0.03 −0.06
0.09 0.02

] [
∆P1t−1

∆P2t−1

]
+

[
u1t

u2t

]
+

[
0.50 −0.11
0.29 0.27

] [
u1t−1

u2t−1

]
+

[
0.02 −0.01
0.02 0.00

] [
u1t−2

u2t−2

]
Σ =

[
42.04 34.92
34.92 78.07

]
(19)

As he concludes, the difference between the aggregation schemes lies solely in their MA dynamics. Especially,
the elements on the main diagonal ofM1 reach greater values compared to skip aggregation. Here Working’s
effect becomes visible.

When we use AIC to select the number of lags, we register a tendency to use more lags as for the skip
aggregated data sets. 32 times three, 52 times four, 13 times five, and even once seven and once eight
lags respectively are suggested. Therefore, we use four lags in our estimations. As visible in table 3, α1 is
this time on average underestimated, when the MA dynamic is not accounted for, and Γ1,11 and Γ1,22 take
over most of effects caused by serial correlation of the error terms. Nevertheless, this can be different for
longer aggregation period lengths and a different non-aggregated process. In the EC-VARMA estimation,
we exclude the second MA lag, as it very close to zero. We can still reproduce most parameter values
through the estimation. The deviations from the true values are stronger due to this exclusion. As for skip
aggregation, the standard deviations of the parameter are higher for the EC-VARMA model. Therefore,
the estimation can be seen as less efficient. Irrespectively of aggregation scheme or the used estimation
procedure, the long-run parameters are correctly and efficiently estimated.
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3.3 Price discovery measures

The PT measure and the IS measure depend on the estimated parameter values. As presented in the previous
subsections, these values change when the data set is temporally aggregated. In table 4, we give the means
and standard deviations for the PT measure. In case for the VECM estimations, we observe only a slight
shift from PT 2 to PT 1. For the EC-VARMA models this shift is stronger. The standard deviations increased
as well, due to less estimation efficiency.

non-aggregated skip-aggregated average-aggregated
data sets data sets data sets

PT 1 PT 2 PT 1 PT 2 PT 1 PT 2

VECM
mean 0.68 0.32 0.76 0.24 0.76 0.24

standard deviation 0.01 0.01 0.02 0.02 0.03 0.03
EC-VARMA

mean 0.69 0.31 0.94 0.06 0.92 0.08
standard deviation 0.01 0.01 0.09 0.09 0.04 0.04

Table 4: PT measures for VECMs and EC-VARMA models, source: own calculation

non-aggregated skip-aggregated average-aggregated
data sets data sets data sets

IS1 IS2 IS1 IS2 IS1 IS2

VECM
mean 0.33 0.67 0.52 0.48 0.53 0.47

standard deviation 0.02 0.02 0.02 0.02 0.02 0.02
mean (r. o.) 0.18 0.82 0.03 0.97 0.03 0.97

standard deviation (r. o.) 0.02 0.02 0.01 0.01 0.01 0.01
EC-VARMA

mean 0.34 0.66 0.52 0.48 0.53 0.47
standard deviation 0.02 0.02 0.02 0.02 0.02 0.02

mean (r. o.) 0.24 0.76 0.04 0.96 0.07 0.93
standard deviation (r. o.) 0.01 0.01 0.02 0.02 0.01 0.01

Table 5: IS measures for VECMs and EC-VARMA models for both orderings of the variables (r. o.
= reverse ordering), source: own calculation

For the IS measure, we give the means and standard deviations in table 5. As this measure depends
on the ordering of the price variables, we also added means and standard deviations for reverse ordering (r.
o.). We observe the biggest differences between the two models for the non-aggregated data sets. When
the data is temporally aggregated, we observe nearly identical shifts for the VECM and the EC-VARMA
models. These shifts are also unclear in direction because they happen in opposite directions depending on
the ordering of the variables.
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Figure 1: Weekly French and German hog prices (class E), source: own illustration, data from Agra
Europe Weekly.

4 Empirical Example: Price transmission between the French
and German hog markets

After the Monte-Carlo Simulations, we look at French and German hog prices from 2006 until 2015, whether
we can find effects of temporal aggregation. From the EU Access2Markets database, we know that France
imported in seven of those ten years no hogs from Germany and at max hogs in value of 250,000 euros
in 2006. In the other direction, French exports increased from 16,3 million euros to 31,2 million euros in
the first six years of our sample. Afterwards they fell back to 22,1 million in 2015. Both countries are
important producers of hogs and are part of European single market. Therefore, they trade a lot with
their other neighboring countries. We want to point out, that the German and French price are probably
contemporaneous aggregates of regional prices, which can also lead to a MA dynamic. Figure 1 shows the
ten years of weekly French and German hog prices. The corresponding sample size is 522.

In the following, price 1 is the German price and price 2 the French one. Using the ADF test on both
prices, we conclude that both prices are integrated. For the non-aggregated data set, AIC, BIC and HQ
suggest a VECM with 2 lags. The model specification also requires a constant in the long-run price relation-
ship. The Johansen test concludes that the prices are stationary. Athanasopoulos et al. (2016) demonstrated
that the Johansen test has a tendency to suggest a higher cointegration rank than the underlying process
actually possesses. Their identification method based on canonical correlations concludes that the prices
are cointegrated. For the specification of the EC-VARMA model, we use a canonical correlation test table
(table 6 ). Because our system consist of two time series variables, we must find two scalar components.
In yellow, we marked the smallest AR and MA order combinations that fulfill this condition. Suggested
combinations are a VECM with 2 lags or a EC-VARMA model with one AR and one MA lag. Note that the
first AR order from the table is used for the error correction parameter. An EC-VARMA model with five
MA lags is also possible, but it would have more free parameters than the other specifications. Therefore,
we focus on the other two.

The parameter values of the VECM and the EC-VARMA with non-aggregated prices are given in table 7.

The error variance-covariance matrices for the VECM Σ =

[
5.21 0.85
0.85 4.83

]
and for the EC-VARMA Σ =

13



MA order q
0 1 2 3 4 5

AR order p

0 0 0 0 0 0 0
1 0 0 1 1 1 2
2 0 2 2 3 3 3
3 2 2 3 2 5 5
4 2 3 3 4 5 7
5 1 1 4 5 6 8

Table 6: Scalar components found by canonical correlation tests for the non-aggregated sample

[
5.69 0.91
0.91 4.85

]
are very similar. For the prediction of the temporal aggregation effects, we use the EC-VARMA

estimation because it leads to aggregated models with less lags.

VECM EC-VARMA
estimate standard deviation p-value estimate standard deviation p-value

β2 -1.03 - - -1.01 - -
β0 -8.65 - - -10.39 - -
α1 -0.08 0.02 0.00 -0.11 0.02 0.00
α2 0.09 0.02 0.00 0.05 0.01 0.00

Γ1,11 0.72 0.04 0.00 0.44 0.08 0.00
Γ1,21 0.29 0.04 0.00 0.22 0.06 0.00
Γ1,12 0.06 0.04 0.22 -0.13 0.10 0.16
Γ1,22 0.29 0.04 0.00 0.56 0.06 0.00
Γ2,11 -0.28 0.05 0.00 - - -
Γ2,21 0.00 0.04 0.95 - - -
Γ2,12 -0.01 0.04 0.79 - - -
Γ2,22 0.16 0.04 0.00 - - -
M1,11 - - - 0.26 0.09 0.00
M1,21 - - - 0.09 0.08 0.28
M1,12 - - - 0.15 0.11 0.17
M1,22 - - - -0.30 0.08 0.00

Table 7: Model estimations with non-aggregated data set, p-values of t-test, source: own calculation

Plugging in the estimated process in the framework of Marcellino, we predict the following skip aggregated
process:[

∆P1t

∆P2t

]
=

[
−0.66
0.03

] [
P1t−1 − 1.01P2t−1 − 10.39

]
+

[
−0.02 0.06
−0.09 −0.01

] [
∆P1t−1

∆P2t−1

]
+

[
u1t

u2t

]
+

[
0.15 −0.08
0.14 0.12

] [
u1t−1

u2t−1

]
Σ =

[
21.75 9.36
9.36 79.77

]
(20)

This aggregated process can only be seen as an approximation because the number of weekly data points per
month varies between four and five. We use the aggregation period length of four, because it is the closer
to the actual aggregation period length.

For the skip aggregated data set with the first prices of each month, AIC suggests a VECM with two
lags. In table 10, we give its respective estimated parameter values. The decrease in sample size leads to
a rise of the standard deviations and the longer time periods between price observations lead to which is
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slightly bigger than predicted. This under prediction is due to the mentioned aggregation period length
issue. From the two adjustment parameters only, one stays statistically significant and not the one, which
is closer to its predicted value.

We also estimate two EC-VARMA models. For the SCM specification, we look at test table 8. There are
three combinations of AR and MA order with minimal lags: a VECM with two lags, an EC-VARMA model
with just one MA lag and a model without error correction but with 5 MA lags. We choose the second
option. Because, the canonical correlation test also finds scalar components with either just one AR or one
MA lag, we must set further parameter restrictions. We choose the scalar component with one MA lag as our
second scalar component. The model is therefore restricted to 0 for α2. Additionally, the matrix before the
dependent variables A0 cannot be an identity matrix anymore because the scalar component methodology
allows to add multiples of scalar components with more lags to ones with less. A0,21 is therefore part of the
estimated variables. In table 10, we also give the ”normalized” parameter values, i.e., the ones we receive
when we multiply the model with the inverse of A0.

MA order q
0 1 2 3 4 5

AR order p

0 0 1 1 1 1 2
1 1 2 3 3 3 3
2 1 2 4 5 5 5
3 2 4 6 6 7 7
4 2 4 6 7 9 9
5 2 4 6 8 9 10

Table 8: Scalar components found by canonical correlation tests for the skip aggregated sample

As third option, we present the aggregated model in FMA form. The prediction of the parameters
change, we derive the FMA form by multiplying our predicted model with the adjoint of M(L). When
we use the information criterion by Kascha and Trenkler (2015), a model with one AR and one MA lag is
suggested.

Comparing the model estimates, we observe similar values for the cointegration parameters. The alphas
are reversed in which one is bigger in contrast to the prediction for the VECM. The EC-VARMA SCM model
has the biggest share of statistical significant parameters, this is probably due to very limited number of

free parameter. All three models have similar variance-covariances with Σ =

[
52.97 39.97
39.97 59.64

]
for the VECM,

Σ =

[
56.8 43.66
43.66 65.38

]
for the EC-VARMA SCM and Σ =

[
57.33 42.12
42.12 62.68

]
for the EC-VARMA FMA model.

As seen in the previous chapter, the error correction and AR parts are identical between the aggregation
schemes and only the MA dynamic should differ. For average aggregation, we predict the time series process
of equation 21.[

∆P1t

∆P2t

]
=

[
−0.66
0.03

] [
P1t−1 − 1.01P2t−1 − 10.39

]
+

[
−0.02 0.06
−0.09 −0.01

] [
∆P1t−1

∆P2t−1

]
+

[
u1t

u2t

]
+

[
0.37 −0.08
0.19 0.32

] [
u1t−1

u2t−1

]
+

[
0 −0.01
0 0

] [
u1t−2

u2t−2

]
Σ =

[
14.56 6.52
6.52 56.83

]
(21)

In table 11, we present similarly to skip aggregation our results for the three different estimations. For the
VECM and the EC-VARMA FMA model, the respective information criteria suggest the same number of
lags. For the EC-VARMA SCM mode, we look at test table 9. This time, the three possible models are the
VECM with two lags, an EC-VARMA model with one AR and one MA lag and an EC-VARMA model with
two MA lags. Each model has a second scalar component with just the error correction parameter. A0,21 is
therefore a free parameter, that must be estimated.
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MA order q
0 1 2 3 4 5

AR order p

0 0 0 0 1 1 1
1 1 1 3 3 3 3
2 1 3 4 5 5 4
3 2 4 5 6 6 6
4 2 4 6 6 7 8
5 2 4 6 7 8 9

Table 9: Scalar components found by canonical correlation tests for the average aggregated sample

For all three estimations, α1 is bigger than α2 as we predicted, but we observe for all estimations an
relative increase in α2 in comparison to α1. β0 is estimated closest to our prediction by the EC-VARMA
SCM model, for the VECM β0 is estimated nearly double as big. For all estimations, we estimate very few

statistically significant parameter. The variance-covariance matrices are with Σ =

[
40.85 29.44
29.44 40.09

]
for the

VECM, Σ =

[
44.14 −44.52
−44.52 64.9

]
for the EC-VARMA SCM and Σ =

[
44.16 30.54
30.54 41.03

]
for the EC-VARMA

FMA model. The EC-VARMA SCM strongly deviates from the other estimations, because the covariance
of its error terms is negative.

Overall, we find that the long-run parameters such as β2 are not affected by temporal aggregation.
This holds mostly for a constant in the long-run equilibrium as well. We also find a hardly deniable MA
dynamic for the aggregated price data sets. The EC-VARMA FMA specification can include the effects
of the MA dynamic but in contrast to an EC-VARMA SCM model it cannot give the true aggregated
parameter. Because it is difficult to estimate EC-VARMA models with small data sets, it can be helpful to
apply different specifications.

16



V
E
C
M

E
C
-V
A
R
M
A

S
C
M

E
C
-V
A
R
M
A

F
M
A

p
re
d
ic
ti
on

es
ti
m
at
e

st
an

d
ar
d

d
ev
ia
-

ti
on

p
-v
a
lu
e

es
ti
m
a
te

st
a
n
d
a
rd

d
ev
ia
-

ti
o
n

p
-v
a
lu
e

n
o
rm

a
-

li
ze
d

p
re
d
ic
ti
o
n
es
ti
m
a
te

st
a
n
d
a
rd

d
ev
ia
-

ti
o
n

p
-v
a
lu
e

A
0
,2
1

-
-

-
-

-0
.0
3

0
.0
7

0
.7
0

-
-

-
-

-
β
2

-1
.0
1

-1
.0
0

-
-

-1
.0
1

-
-

-1
.0
1

-1
.0
1

-1
.0
1

-
-

β
0

-1
0.
41

-1
2.
40

-
-

-1
0
.8
5

-
-

-1
0
.8
5

-1
0
.4
1

-1
1
.0
5

-
-

α
1

-0
.6
6

-0
.2
3

0.
16

0
.1
6

-0
.9
4

0
.2
2

0
.0
0

-0
.9
4

-0
.6
0

-0
.6
4

0
.1
9

0
.0
0

α
2

0.
03

0.
35

0.
17

0
.0
4

-
-

-
0
.0
3

0
.2
8

0
.3
9

0
.2
0

0
.0
5

Γ
1
,1
1

0.
02

0.
08

0.
15

0
.5
9

-
-

-
-

0
.0
5

0
.0
8

0
.2
1

0
.7
1

Γ
1
,2
1

0.
09

0.
27

0.
16

0
.0
8

-
-

-
-

0
.2
1

0
.2
5

0
.1
7

0
.1
5

Γ
1
,1
2

-0
.0
6

0.
19

0.
15

0
.2
2

-
-

-
-

-0
.1
4

-0
.2
4

0
.1
3

0
.0
8

Γ
1
,2
2

0.
01

0.
11

0.
16

0
.4
8

-
-

-
-

-0
.0
5

-0
.2
7

0
.1
7

0
.1
1

Γ
2
,1
1

-
-0
.2
9

0.
13

0
.0
3

-
-

-
-

0
.0
1

-
-

-
Γ
2
,2
1

-
-0
.2
5

0.
14

0
.0
7

-
-

-
-

0
.0
2

-
-

-
Γ
2
,1
2

-
0.
29

0.
12

0
.0
2

-
-

-
-

0
.0
1

-
-

-
Γ
2
,2
2

-
0.
07

0.
13

0
.5
9

-
-

-
-

0
.0
2

-
-

-
M

1
,1
1

0.
31

-
-

-
0
.8
8

0
.2
5

0
.0
0

0
.8
8

0
.2
2

0
.4
2

0
.2
1

0
.0
5

M
1
,2
1

0.
36

-
-

-
0
.6
9

0
.1
4

0
.0
0

0
.6
7

0
.0
0

-
-

-
M

1
,1
2

-0
.1
5

-
-

-
-0
.6
0

0
.2
4

0
.0
2

-0
.6
0

0
.0
0

-
-

-
M

1
,2
2

-0
.0
9

-
-

-
-0
.2
6

0
.1
4

0
.0
6

-0
.2
4

0
.2
2

0
.4
2

0
.2
1

0
.0
5

M
2
,1
1

-
-

-
-

-
-

-
-

0
.0
3

-
-

-
M

2
,2
1

-
-

-
-

-
-

-
-

0
.0
0

-
-

-
M

2
,1
2

-
-

-
-

-
-

-
-

0
.0
0

-
-

-
M

2
,2
2

-
-

-
-

-
-

-
-

0
.0
3

-
-

-

T
ab

le
10
:
M
o
d
el

es
ti
m
at
io
n
s
w
it
h
sk
ip

a
g
g
re
g
a
te
d
d
a
ta

se
t,

p
-v
a
lu
es

o
f
t-
te
st
,
so
u
rc
e:

ow
n
ca
lc
u
la
ti
o
n

17



V
E
C
M

E
C
-V
A
R
M
A

S
C
M

E
C
-V
A
R
M
A

F
M
A

p
re
d
ic
ti
on

es
ti
m
at
e

st
an

d
ar
d

d
ev
ia
-

ti
on

p
-v
a
lu
e

es
ti
m
a
te

st
a
n
d
a
rd

d
ev
ia
-

ti
o
n

p
-v
a
lu
e

n
o
rm

a
-

li
ze
d

p
re
d
ic
ti
o
n
es
ti
m
a
te

st
a
n
d
a
rd

d
ev
ia
-

ti
o
n

p
-v
a
lu
e

A
0
,2
1

-
-

-
-

1
.7
0

0
.0
6

0
.0
0

-
-

-
-

-
β
2

-1
.0
1

-0
.9
5

-
-

-1
.0
2

-
-

-1
.0
2

-1
.0
1

-1
.0
2

-
-

β
0

-1
0.
41

-1
9.
81

-
-

-9
.9
2

-
-

-9
.9
2

-1
0
.4
1

-8
.9
2

-
-

α
1

-0
.6
6

-0
.3
0

0.
15

0
.0
4

-0
.3
7

0
.3
6

0
.3
1

-0
.3
7

-0
.7
1

-0
.5
5

0
.1
9

0
.0
0

α
2

0.
03

0.
18

0.
15

0
.2
3

0
.8
2

0
.1
3

0
.0
0

0
.1
9

0
.3
2

0
.3
4

0
.1
7

0
.0
6

Γ
1
,1
1

0.
02

0.
12

0.
15

0
.4
2

-
-

-
-

-0
.0
3

-0
.2
5

0
.1
5

0
.1
0

Γ
1
,2
1

0.
09

0.
35

0.
15

0
.0
2

-
-

-
-

0
.1
9

0
.1
4

0
.1
3

0
.2
6

Γ
1
,1
2

-0
.0
6

0.
24

0.
15

0
.1
1

-
-

-
-

-0
.3
0

0
.0
3

0
.1
4

0
.8
3

Γ
1
,2
2

0.
01

0.
25

0.
15

0
.0
9

-
-

-
-

-0
.2
3

-0
.1
0

0
.1
6

0
.5
1

Γ
2
,1
1

-
-0
.1
1

0.
13

0
.4
0

-
-

-
-

0
.0
3

-
-

-
Γ
2
,2
1

-
-0
.1
8

0.
13

0
.1
7

-
-

-
-

0
.0
5

-
-

-
Γ
2
,1
2

-
0.
09

0.
13

0
.4
9

-
-

-
-

-0
.0
0

-
-

-
Γ
2
,2
2

-
-0
.1
3

0.
13

0
.3
2

-
-

-
-

0
.0
3

-
-

-
M

1
,1
1

0.
54

-
-

-
0
.5
0

0
.1
3

0
.0
0

0
.5
0

0
.6
5

0
.5
9

0
.1
3

0
.0
0

M
1
,2
1

0.
38

-
-

-
-

-
-

0
.8
5

0
.0
0

-
-

-
M

1
,1
2

-0
.1
9

-
-

-
0
.1
9

0
.2
7

0
.4
7

0
.1
9

0
.0
0

-
-

-
M

1
,2
2

0.
10

-
-

-
-

-
-

0
.3
3

0
.6
5

0
.5
9

0
.1
3

0
.0
0

M
2
,1
1

0.
02

-
-

-
-0
.0
3

0
.3
5

0
.9
3

-0
.0
3

0
.1
3

-
-

-
M

2
,2
1

0.
03

-
-

-
-

-
-

-0
.0
5

0
.0
0

-
-

-
M

2
,1
2

-0
.0
1

-
-

-
0
.0
0

0
.2
1

1
.0
0

0
.0
0

0
.0
0

-
-

-
M

2
,2
2

-0
.0
1

-
-

-
-

-
-

0
.0
0

0
.1
3

-
-

-

T
ab

le
11
:
M
o
d
el

es
ti
m
at
io
n
s
w
it
h
av
er
a
g
e
a
g
g
re
g
a
te
d
d
a
ta

se
t,
p
-v
a
lu
es

o
f
t-
te
st
,
so
u
rc
e:

ow
n
ca
lc
u
la
ti
on

18



For the VECM estimations and the EC-VARMA SCM models, we calculated the PT and IS measures
and present them in table 12. The magnitudes of the individual PT measures change when the data is
temporally aggregated, still the price which corrects the most stays the same. Only for the VECM with
average-aggregated data, we observe a switch. Additionally the VECM and the EC-VARMA model come
initially to different results which price corrects more.

The IS measure has similar results for the non-aggregated data set for both models. When we skip
aggregate the data, we observe a stronger shift to the German price for the VECM than for the EC-VARMA
model. For average aggregation, we get completely opposite results. Price transmission measures depend
on the estimated parameters. These change with temporal aggregation, therefore the price transmission
measures will change as well. In the worst case, we find measure values for aggregated data, which stand in
opposition to ones of the non-aggregated data.

non-aggregated skip-aggregated average-aggregated
data set data set data set

PT 1 PT 2 PT 1 PT 2 PT 1 PT 2

VECM 0.47 0.53 0.40 0.60 0.63 0.37
EC-VARMA SCM 0.69 0.31 0.97 0.03 0.78 0.22

IS1 IS2 IS1 IS2 IS1 IS2

VECM 0.65 0.35 0.90 0.10 0.79 0.21
VECM (r. o.) 0.52 0.48 0.80 0.20 0.93 0.07

EC-VARMA SCM 0.55 0.45 0.73 0.27 0.01 0.99
EC-VARMA SCM (r. o.) 0.68 0.32 0.68 0.32 0.29 0.71

Table 12: PT and IS measures for the VECM and EC-VARMA SCM models (r. o. = reverse
ordering), source: own calculation

5 Conclusions

Temporal aggregation creates additional challenges to correctly model price transmission. The gap between
the frequency on with market participants act and the frequency scientist analyze their actions leads to
internal dependencies in the time series models. In theory, the aggregated data stays cointegrated and
long-run price equilibriums are not affected. The short-run parameters just change.

For the time series model, the induced internal dependencies must be modelled with MA lags to receive
interpretable parameter values. When we simply estimate VECM with aggregated data, we unconsciously
assume, that no information is transmitted between markets between two price observations. Still, switching
to EC-VARMA models create a new issue.

The identification problem complicates now the estimation, we must set restrictions before the model
can be estimated. If we use the FMA form, the restrictions will modify all relevant parameters, resulting in
a correct estimation but its estimates are not easily interpretable. For EC-VARMA in SCM form, we need
sufficient sample sizes, to find all scalar components. In our empirical example, ten years of monthly data
were only enough to find the approximations of aggregated model. EC-VARMA estimations can give more
statistically significant parameters than the ones of VECMs. Larger samples might also mitigate the greater
parameter standard deviations, we observed in our Monte-Carlo experiments. The FMA form is relatively
simple to specify and to estimate, but only the SCM form allows to get insights on the parameters of the
unrestricted model, on parameters that are interpretable.

Nevertheless, it is advisable to use high frequency data, because internal dependency structures can be
avoided. High frequency is hereby a relative term, i.e., if most price information is cycled on weekly basis,
e.g., by a newspaper, weekly data can be high frequency data.

We only cover the temporal aggregation cases where the data is aggregated synchronously. When aggre-
gation schemes are mixed, or the data is asynchronously aggregated, additional problems may arise. Here,
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a skewed internal dependency structure might strongly affect estimations of the long-run price equilibrium,
even though it should be unaffected in theory.

Price transmission measures, such as the PT and IS measure, directly depend on the estimated model
parameters. If they change either through the temporal aggregation of the data or the chosen model to
estimate them, they cannot be interpreted without taking these conditions into account.
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Appendix

Numeric example for temporal aggregation

In this appendix, we give an example for the procedure of Marcellino (1999). We use here same the EC-
VARMA model as in the Monte Carlo experiment:[

∆P1t

∆P2t

]
=

[
−0.11
0.05

] [
P1t−1 − 1.01P2t−1 − 10.39

]
+

[
0.44 −0.13
0.22 0.56

] [
∆P1t−1

∆P2t−1

]
+

[
u1t

u2t

]
+

[
0.26 0.15
0.09 −0.3

] [
u1t−1

u2t−1

]
(1)

with error means E

[
u1t

u2t

]
=

[
0
0

]
and variance-covariance matrix Σ =

[
5.69 0.91
0.91 4.85

]
.

At first we transfer the EC-VARMA into its level-VARMA representation (we ignore for now the con-
stant): [

P1t

P2t

]
=

[
1.33 −0.02
0.27 1.51

] [
P1t−1

P2t−1

]
+

[
−0.44 0.13
−0.22 −0.56

] [
P1t−2

P2t−2

]
+

[
u1t

u2t

]
+

[
0.26 0.15
0.09 0.3

] [
u1t−1

u2t−1

]
(2)

Now the model can be expressed with the lag operator L by the following equation:([
1 0
0 1

]
−
[
1.33 −0.02
0.27 1.51

]
L−

[
−0.44 0.13
−0.22 −0.56

]
L2

)[
P1t

P2t

]
=

([
1 0
0 1

]
−
[
−0.26 −0.15
−0.09 −0.3

]
L

)[
u1t

u2t

]
(3)

We call the matrices before the lag operators A1 to A2 respectively. They constitute together with the
identity matrix in the beginning the AR lag matrix polynomial A(L):

A(L) = I −A1L−A2L
2 (4)

To temporally aggregate to the monthly model, we pre-multiply a specific lag matrix polynomial B(L) to
both sides of the equation. The resulting aggregated AR lag matrix polynomial A∗(L) only depends on each
forth price observation:

A∗(L) = B(L)A(L) = I −A∗
4L

4 −A∗
8L

8 (5)
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Through re-indexing, we move the length of one period from one week to one month:

A∗(L∗) = I −A∗
1∗L

∗ −A∗
2∗L

∗2 (6)

To derive the coefficients of B(L), we need two matrices:

Av =

[
1.33 −0.02 −0.44 0.13 0 ... 0
0.27 1.51 −0.22 −0.56 0 ... 0

]
2×2(2∗4)

(7)

Am =



−1 0 1.33 −0.02 −0.44 0.13 0 0 ... 0 0
0 −1 0.27 1.51 −0.22 −0.56 0 0 ... 0 0

0 0 −1 0 1.33 −0.02 −0.44 0.13
. . . 0 0

0 0 0 −1 0.27 1.51 −0.22 −0.56
. . . 0 0

...
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

...

0 0 ... ... 0 0 −1 0 . . . −0.44 0.13
0 0 ... ... 0 0 0 −1 . . . −0.22 −0.56


2(2∗4−2)×2(2∗4)

(8)

From 7 and 8, we determine Av,−l and Am,−l by deleting each fourth block column, i.e., we will delete
the fourth one, the eighth one and the twelfth one. The coefficients matrix B = −(B1, B2, ..., B9) is then
determined by:

B = Av,−lA
−1
m,−l =

[
−1.33 0.02 −1.32 −0.08 −1.2 −0.27
−0.27 −1.51 −0.55 −1.71 −0.74 −1.77

−0.7 0.09 −0.32 0.14 −0.1 0.08
−0.71 −0.79 −0.44 −0.28 −0.18 −0.07

]
(9)

These coefficient matrices, we insert in B(L) = I +B1L+B2L
2 + ...+B6L

6 (notice the sign change before
the B-matrices) and determine the aggregated autoregressive polynomial:

A∗(L) = B(L)A(L) =

[
1 0
0 1

]
+

[
−0.37 −0.61
−0.13 −0.98

]
L4 +

[
0.03 −0.06
0.09 0.02

]
L8 (10)

expressed with the aggregated lag operator:

A∗(L∗) =

[
1 0
0 1

]
+

[
−0.37 −0.61
−0.13 −0.98

]
L∗1 +

[
0.03 −0.06
0.09 0.02

]
L∗2 (11)

We can now transform the pure autoregressive representation to its error correction form:

Π∗ = −
([

1 0
0 1

]
−
[
0.37 0.61
0.13 0.98

]
−
[
−0.03 0.06
−0.09 −0.02

])
=

[
−0.66 0.66
0.04 −0.04

]
=

[
−0.66
0.04

] [
1 −1.01

]
(12)

and

Γ∗
1 = −

[
−0.03 0.06
−0.09 −0.02

]
=

[
0.03 −0.06
0.09 0.02

]
(13)

In the beginning, we ignored the constant. As it is part of the cointegration relationship, it doesn’t change.
As for the parameter before P2t−1, the alphas absorb all the changes due to temporal aggregation.

So far, we do not differentiate between skip and average aggregation because their Π∗ and Γ∗
1 are identical

(average aggregation can be seen as the average of all possible skip aggregations). The aggregation schemes
differ only in their MA dynamic, which we derive in the following, starting with skip aggregation: Because
we premultiplied B(L) to A(L)Pt, we also must premultiply it to M(L)ut:
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B(L)M(L)ut =

[
u1t

u2t

]
+

[
1.59 0.13
0.36 1.81

] [
u1t−1

u2t−1

]
+ ...+

[
0.02 −0.01
0.05 0.05

] [
u1t−7

u2t−7

]
(14)

Of equation 14, we derive the variance-covariance matrix Σ0:

Σ0 = B(1)ΣB(1)′ (15)

Σ0 =

[
1 0
0 1

] [
5.69 0.91
0.91 4.85

] [
1 0
0 1

]
+

[
1.59 0.13
0.36 1.81

] [
5.69 0.91
0.91 4.85

] [
1.59 0.13
0.36 1.81

]′
+

...+

[
0.02 −0.01
0.05 0.05

] [
5.69 0.91
0.91 4.85

] [
0.02 −0.01
0.05 0.05

]′
=

[
61.95 51.42
51.42 115.59

]
(16)

Additionally, we need the first and second autocovariance matrix Σ1. For this, we shift the first B(L) in
equation 15 by 4 or 8 lags respectively:

Σ1 =

[
1.59 0.13
0.36 1.81

] [
5.69 0.91
0.91 4.85

] [
1 0
0 1

]
+

[
1.67 0.27
0.75 2.21

] [
5.69 0.91
0.91 4.85

] [
1.59 0.13
0.36 1.81

]′
+

...+

[
0.02 −0.01
0.05 0.05

] [
5.69 0.91
0.91 4.85

] [
0.17 −0.07
0.32 0.22

]′
=

[
12.05 3.36
19.43 21.68

]
(17)

With Σ0 and Σ1, we set up the equation system described by 18 and 19, where Σ∗ is the aggregated
error variance-covariance matrix and the M∗

i the MA coefficient matrices. M∗
0 is set to the identity matrix.

Σ0 =

1∑
i=0

M∗
i Σ

∗M∗
i
′ (18)

Σ1 =M∗
1Σ

∗M∗
0
′ (19)

To solve this equation system, we use the R-package ”nleqslv”. It gives the following solutions:

Σ∗ =

[
58.88 47.99
47.99 108.69

]
M∗

1 =

[
0.28 −0.09
0.26 0.08

]
After deriving the MA-dynamic for skip aggregation, we move on to average aggregation. Its derivation is
similar, we just must adapt B(L) by premultiplying additionally the polynomial 1/4+1/4L+1/4L2+1/4L3:

(1/4 + 1/4L+ 1/4L2 + 1/4L3)B(L)ut =

[
0.25 0.00
0.00 0.25

] [
u1t

u2t

]
+

[
0.65 0.03
0.09 0.7

] [
u1t−1

u2t−1

]
+[

1.06 0.1
0.28 1.25

] [
u1t−2

u2t−2

]
+ ...+

[
0.00 0.00
0.01 0.01

] [
u1t−10

u2t−10

]
(20)

Its variance-covariance and autocorrelations matrices are:

Σ0 =

[
49.55 42.30
42.30 93.16

]
Σ1 =

[
17.24 8.84
22.23 32.11

]
Σ2 =

[
0.42 −0.02
0.92 0.78

]
Because we have three autocovariance matrices, we also need three lags in the aggregated MA-dynamic. The
respective equation system ( 21, 22, 23) contains therefore also four equations. M∗

0 is set to the identity
matrix.

Σ0 =

2∑
i=0

M∗
i Σ

∗M∗
i
′ (21)

Σ1 =M∗
1Σ

∗M∗
0
′ +M∗

2Σ
∗M∗

1
′ (22)

Σ2 =M∗
2Σ

∗M∗
0
′ (23)
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Its solutions are:

Σ∗ =

[
42.04 34.92
34.92 78.07

]
M∗

1 =

[
0.50 −0.11
0.29 0.27

]
M∗

2 =

[
0.02 −0.01
0.02 0.00

]
In summary, we derived theoretically for skip aggregation the following model:[

∆P1t

∆P2t

]
=

[
−0.66
0.04

] [
P1t−1 − 1.01P2t−1 − 10.41

]
+

[
0.03 −0.06
0.09 0.02

] [
∆P1t−1

∆P2t−1

]
+

[
u1t

u2t

]
+[

0.28 −0.09
0.26 0.08

] [
u1t−1

u2t−1

]
+, Σ∗ =

[
58.88 47.99
47.99 108.69

]
(24)

and for average aggregation this model:[
∆P1t

∆P2t

]
=

[
−0.66
0.04

] [
P1t−1 − 1.01P2t−1 − 10.41

]
+

[
0.03 −0.06
0.09 0.02

] [
∆P1t−1

∆P2t−1

]
+

[
u1t

u2t

]
+[

0.50 −0.11
0.29 0.27

] [
u1t−1

u2t−1

]
+

[
0.02 −0.01
0.02 0.00

] [
u1t−2

u2t−2

]
, Σ∗ =

[
42.04 34.92
34.92 78.07

]
(25)
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